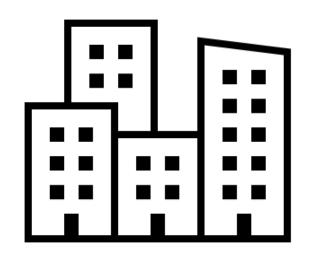
LCA & EPDs in practice

Amarpreet Singh LCA & EPD Expert

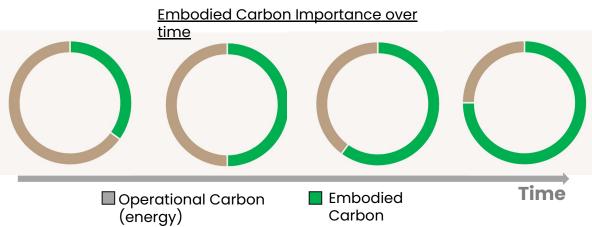
Tools to decarbonize construction & manufacturing



Target: All construction to create at least 40% less embodied carbon by 2030

World Green Building Council

Cities are expected to **double** by 2060, adding an extra 230 gigatons of embodied carbon


= Adding 1 New York City every **29 days** till 2060

Materials will be the dominant source of CO2 emissions

Embodied carbon policies

US Embodied Carbon Policies/Certifications

Examples

Buy Clean California

State agencies, the University of CA, and CA State University systems construction projects must meet specific GWP limits for structural steel, concrete reinforcing steel, and light and medium density mineral wool board insulation.

Denver Green Code

Requires projects using the voluntary code to meet specific GWP limits for concrete and steel products.

Portland Low Carbon Concrete Initiative

Concrete in city construction projects must meet specific **GWP** limits.

CalGreen

All California projects over 100,000 sf can comply through building reuse, whole building LCA, or specific GWP limits for select products.

New Jersey Buy Clean

Concrete GWP limits for statefunded projects, 5% bid discount for exceeding limits, and 3% discount for bids with carbon capture, utilization, and storage Up to 8% tax credit for concrete producers who overperform.

ASHRAE 189.1

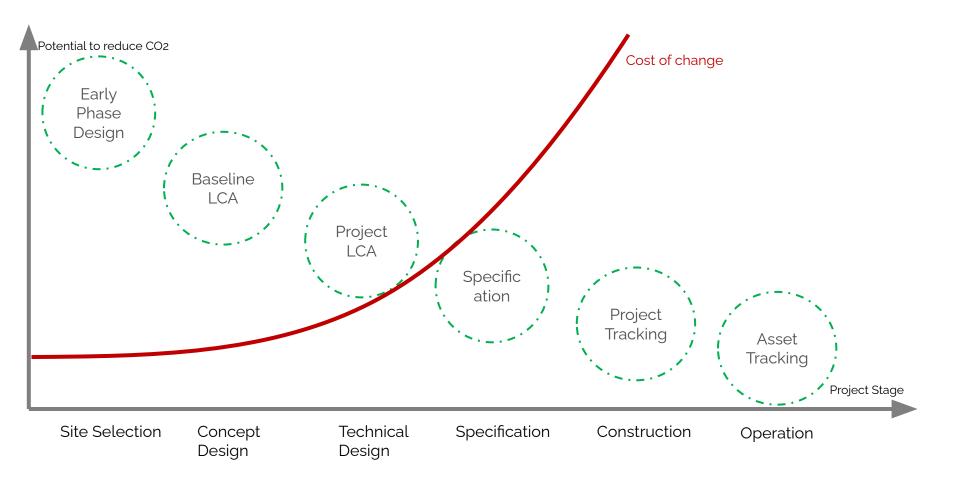
EPDs for 30 products + Product GWP limit at 125% of IW-EPD for a minimum of 10 building products and enough products to equal 15% or 20% (JO) of product costs, and products that cost 5%+ of the material costs.

Austin Green Building Program

The City rating system includes credits/points for WB LCA and embodied carbon reduction

Other Codes

Marin County International Building Code Denver Green Code Denver Building Code Washington Building Code Oregon Residential Code Seattle Building Code



LEED

Life Cycle Stages

A1 - A3 Product stage

- Al Raw material extraction
- **A2** Transport to manufacturing site
- A3 Manufacturing

A4 - A5 Construction stage

- **A4** Transport to construction site
- A5 Installation / Assembly

B1 - B5 Use stage

- B1 Use
- **B2** Maintenance
- **B3** Repair
- **B4** Replacement
- **B5** Refurbishment
- **B6** Operational energy use
- **B7** Operational water use

C1 - C4 End of life stage

- C1 Deconstruction & demolition
- **C2** Transport
- C3 Waste processing
- C4 Disposal

D - Benefits and loads beyond system boundary

Reuse, recovery and/or recycling potentials, expressed as net impacts and benefits

What is an EPD?

ENVIRONMENTAL IMPACTS

Declared Product:

Mix 3EFZ75Q1 • South San Francisco (wet) Plant 3IN LN 0.45 W/C 1" EF45 3-5SL CO2 Compressive strength: 5000 PSI at 28 days

Declared Unit: 1 m³ of concrete

Global Warming Potential (kg CO ₂ -eq)	287
Ozone Depletion Potential (kg CFC-11-eq)	1.0E-5
Acidification Potential (kg SO ₂ -eq)	1.86
Eutrophication Potential (kg N-eq)	0.36
Photochemical Ozone Creation Potential (kg O ₃ -eq)	40.7
Abiotic Depletion, non-fossil (kg Sb-eq)	4.0E-6
Abiotic Depletion, fossil (MJ)	817
Total Waste Disposed (kg)	1.90
Consumption of Freshwater (m ³)	1.86

Product Components: natural aggregate (ASTM C33), crushed aggregate (ASTM C33), Portland cement (ASTM C150), slag cement (ASTM C989), fly ash (ASTM C618), batch water (ASTM C1602), admixture (ASTM C494)

- Based on product LCAs
- Think 'food labels'
- Transparency
- Provides data on environmental performance
- Third party verified and standards compliant (ISO, EN)
- Can have different levels of resolution plant specific, manufacturer specific or industry average
- Avoids greenwashing

The environmental data in an EPD comes from a product level Life-Cycle Assessment

What constitutes an Environmental Product Declaration?

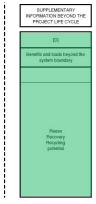
PRODUCT LCA RESULTS

An LCA/EPD is always in line with ISO 14025 (standard defining an EPD) and practically also always in line with EN 15804 (European EPD standard) or then ISO 21930

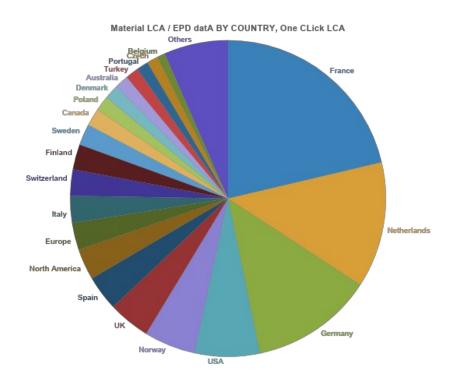
INDEPENDENT VERIFICATION

Verification by an independent third party, approved to verify by the EPD Program Operator

EPD must be created in line with Program Operator's requirements and Product Category Rules


PUBLISHED IN AN EPD PROGRAM

EPD Types: Scope


- Cradle-to-gate: This is the minimum scope
- Cradle-to-gate with options: For EN 15804+A2, this is the mandatory scope (with some exemptions)
- Cradle-to-grave: This includes the whole life cycle

					PROJEC	CT LIFE CYC	CLE INFORM	MATION					
[A1 – A3] [A4 – A5]			[B1 – B7]					[C1 - C4]					
PRODUCT stage			PRO	RUCTION CESS age	USE stage				END OF LIFE stage				
[A1]	[A2]	[A3]	[A4]	[A5]	[B1]	[B2]	[B3]	[84]	[85]	[C1]	[C2]	[C3]	[C4]
Raw material extraction & supply	Transport to manufacturing plant	Manufacturing & fabrication	Transport to project site	Construction & installation process	esn nee	Maintenance	Repair	Replacement	Refurbishment	Deconstruction Demolition	Transport to disposal facility	Waste processing for recycling	Disposal
				3		[B6] Operational energy use							

There is no central repository for EPDs, they are published by different program operators

Why publish EPDs?

BUYERS, SPECIFIERS & THE MARKET REQUIRE EPDS

Buyers and specifiers want

EPDs are required by regulations mandating LCA

EPDs are required for commercial certifications

EPD = ENVIRONMENTAL PRODUCT DECLARATION

- ISO 14025/40/44 & EN 15804/ISO 21930 compliant
- Life-cycle assessment based, comprehensive impact data
- Third-party verified and program operator approved
- Used to make environmental claims & choose products

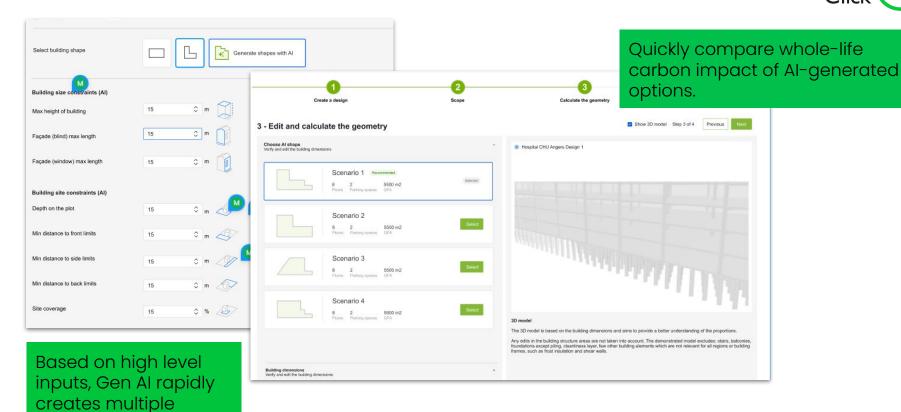
Sustainable Design: Pain Points

1 Lack of quality data

Manual / labour intensive process

2 Cost of EPD creation

Early stage design optioneering

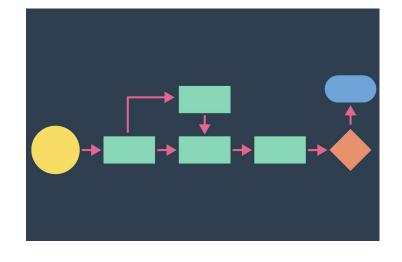

Data mapping from BIM and Excel

6 Not fully embedded

Generative AI-driven feasibility & optioneering

design options.

Cost/complexity of creating EPDs is Manufacturers' #1 pain point!



Luckily, AI and Automation can help

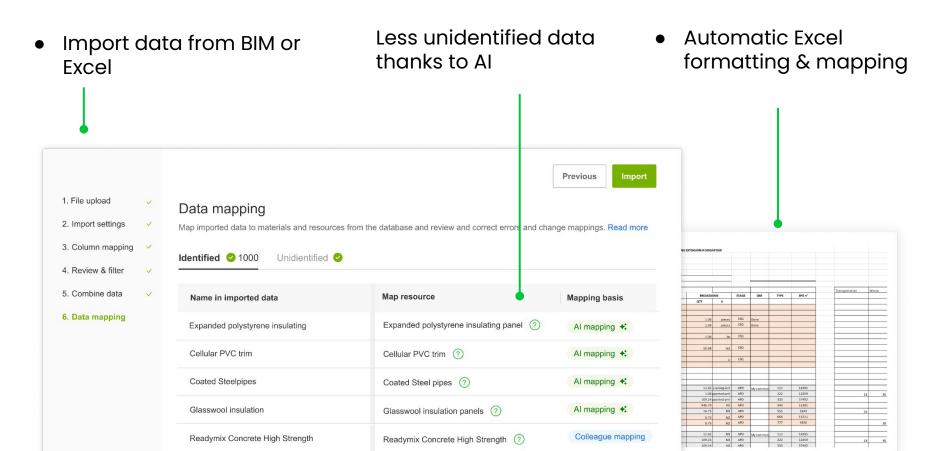
- EPD creation and verification is a repeatable workflow performed 1000s of times each year
- So it's perfect for:
 - (1) Training algorithms
 - (2) Automating
- Al models help us with:
 - Instantaneous, intelligent checking of fields
 - Flagging where a mistake is predicted

While EPDs are still manually verified, AI reduces friction and helps EPD creators get it right first time

Pain: Identifying, classifying and mapping materials is tedious

Whole Life Carbon reduction needs quality data

Manual data selection



But getting data into LCA software is:

- Time consuming
- Tedious
- Error prone

Al powered import mapping can add speed and simplicity

What the future looks like

1. Al-enhancements will continue to gather pace

"End to end Al-powered sustainable design"

2. Further integration of workflows, data, tooling...

- Urban planning
- Vegetation
- Microclimate / Heat Stress

Hands on demos available during networking session

Keep in touch

amarpreet.singh@oneclicklca.com

Thank you!